Dalam analisis numerik, metode Newton (juga dikenal sebagai metode Newton-Raphson), yang mendapat nama dari Isaac Newton dan Joseph Raphson, merupakan metode yang paling dikenal untuk mencari hampiran terhadap akar fungsi riil.
Metode Newton sering konvergen dengan cepat, terutama bila iterasi
dimulai "cukup dekat" dengan akar yang diinginkan. Namun bila iterasi
dimulai jauh dari akar yang dicari, metode ini dapat meleset tanpa
peringatan. Implementasi metode ini biasanya mendeteksi dan mengatasi
kegagalan konvergensi.
Diketahui fungsi ƒ(x) dan turunannya ƒ '(x), kita memulai dengan tebakan pertama, x0 . Hampiran yang lebih baik x1 adalah
Gagasan metode ini adalah sebagai berikut: kita memulai dengan
tebakan awal yang cukup dekat terhadap akar yang sebenarnya, kemudian
fungsi tersebut dihampiri dengan garis singgungnya (yang dapat dihitung dengan alat-alat kalkulus, dan kita dapat menghitung perpotongan garis ini dengan sumbu-x (yang dapat dilakukan dengan mudah menggunakan aljabar dasar). Perpotongan dengan sumbu-x ini biasanya merupakan hampiran yang lebih baik ke akar fungsi daripada tebakan awal, dan metode ini dapat diiterasi.
Misalkan ƒ : [a, b] → R adalah fungsi terturunkan yang terdefinisi pada selang [a, b] dengan nilai merupakan bilangan riil R. Rumus untuk menghampiri akar dapat dengan mudah diturunkan. Misalkan kita memiliki hampiran mutakhir xn. Maka kita dapat menurunkan hampiran yang lebih baik, xn+1 dengan merujuk pada diagram di kanan. Kita tahu dari definisi turunan pada suatu titik bahwa itu adalah kemiringan garis singgung pada titik tersebut, yaitu:
karena pada iteasi ketujuh f(x6) = 0 maka akar dari persamaan tersebut adalah x = 2.
Diketahui fungsi ƒ(x) dan turunannya ƒ '(x), kita memulai dengan tebakan pertama, x0 . Hampiran yang lebih baik x1 adalah
Deskripsi metode
Misalkan ƒ : [a, b] → R adalah fungsi terturunkan yang terdefinisi pada selang [a, b] dengan nilai merupakan bilangan riil R. Rumus untuk menghampiri akar dapat dengan mudah diturunkan. Misalkan kita memiliki hampiran mutakhir xn. Maka kita dapat menurunkan hampiran yang lebih baik, xn+1 dengan merujuk pada diagram di kanan. Kita tahu dari definisi turunan pada suatu titik bahwa itu adalah kemiringan garis singgung pada titik tersebut, yaitu:
Contoh :
Tentukan akar dari persamaan 4x3 – 15x2 + 17x – 6 = 0 menggunakan Metode Newton-Raphson.
Penyelesaian :
f(x) = 4x3 – 15x2 + 17x – 6
f’(x) = 12x2 – 30x + 17
iterasi 1 :
ambil titik awal x0 = 3
f(3) = 4(3)3 – 15(3)2 + 17(3) – 6 = 18
f’(3) = 12(3)2 – 30(3) + 17 = 35
x1 = 3 – = 2.48571
iterasi 2 :
f(2.48571) = 4(2.48571)3 – 15(2.48571)2 + 17(2.48571) – 6 = 5.01019
f’(2.48571) = 12(2.48571)2 – 30(2.48571) + 17 = 16.57388
x2 = 2.48571 – = 2.18342
iterasi 3 :
f(2.18342) = 4(2.18342)3 – 15(2.18342)2 + 17(2.18342) – 6 = 1.24457
f’(2.18342) = 12(2.18342)2 – 30(2.18342) + 17 = 8.70527
x3 = 2.18342 – = 2.04045
iterasi 4 :
f(2.04045) = 4(2.04045)3 – 15(2.04045)2 + 17(2.04045) – 6 = 0.21726
f’(2.04045) = 12(2.04045)2 – 30(2.04045) + 17 = 5.74778
x4 = 2.04045 – = 2.00265
iterasi 5 :
f(3) = 4(2.00265)3 – 15(2.00265)2 + 17(2.00265) – 6 = 0.01334
f’(2.00265) = 12(2.00265)2 – 30(2.00265) + 17 = 5.04787
x5 = 2.00265 – = 2.00001
iterasi 6 :
f(2.00001) = 4(2.00001)3 – 15(2.00001)2 + 17(2.00001) – 6 = 0.00006
f’(2.00001) = 12(2.00001)2 – 30(2.00001) + 17 = 5.00023
x6 = 2.00001 – = 2.00000
iterasi 7 :
f(2) = 4(2)3 – 15(2)2 + 17(2) – 6 = 0
jika disajikan dalam tabel, maka seperti tabel dibawah ini.
n
|
xn
|
f(xn)
|
f'(xn)
|
0
1
2
3
4
5
6
|
3
2.48571
2.18342
2.04045
2.00265
2.00001
2.00000
|
18
5.01019
1.24457
0.21726
0.01334
0.00006
0.00000
|
35
16.57388
8.70527
5.74778
5.04787
5.00023
5.00000
|
Komentar
Posting Komentar