CONTOH SOAL UJI CHI KUADRAT
Contoh 1 untuk dua kategori:
Telah dilakukan pengumpulan data untuk mengetahui bagaimana kemungkinan rakyat dikabupaten pringgodani dalam memilih dua calon kepala desa. Calon yang satu adalah wanita dan calon yang kedua adalah pria. Sampel sebagai sumber data diambil secara random sebanyak 300 orang. Dari sampel tersebut ternyata 200 orang memilih pria dan 100 orang memilih wanita.
Hipotesis yang diajukan adalah:
Ho: peluang calon pria dan wanita adalah sama untuk dapat dipilih menjadi kepala desa.
Ha: peluang calon pria dan wanita adalah tidak sama untuk dapat di pilih menjadi kepala desa.
Untuk dapat membuktikan hipotesis dengan rumus 5.4 tersebut, maka data yang terkumpul perlu disusun ke dalam tabel seperti tabel 5.3 berikut:
TABEL 5.3
KECENDRUNGAN RAKYAT DI KABUPATEN
PRINGGODANI DALAM MEMILIH KEPALA DESA
Alternatif Calon Kepala Desa
|
Frekuensi yang diperoleh
|
Frekuensi yang diharapkan
|
Calon Pria
Calon Wanita
|
200
100
|
150
150
|
Jumlah
|
300
|
300
|
Catatan: Jumlah frekuensi yang diharapkan adalah sama yaitu 50% : 50% dari seluruh sampel.
Untuk dapat menghitung besarnya Chi Kuadrat (χ2) dengan menggunakan rumus 5.4, maka diperlukan tabel penolong seperti yang ditunjukkan pada tabel 5.4 berikut.
TABEL 5.4
TABEL PENOLONG UNTUK MENGHITUNG CHI KUADRAT
DARI 300 ORANG SAMPEL
Alternatif Pilihan
|
fo
|
fh
|
fo - fh
|
(fo – fh)2
|
(fo – fh)2/ fh
|
Pria
Wanita
|
200
100
|
150
150
|
50
-50
|
2500
2500
|
16,67
16,67
|
Jumlah
|
300
|
300
|
0
|
5000
|
33,33
|
Catatan: Disini frekuensi yang diharapkan (fh) untuk kelompok yang memilih pria dan wanita = 50%. Jadi, 50% x 300 = 150
Harga Chi Kuadrat dari perhitungan dengan rumus 5.4 ditunjukkan pada tabel di atas yakni jalur paling kanan yang besarnya 33,33.
Untuk dapat membuat keputusan tentang hipotesis yang diajukan diterima atau di tolak, maka harga chi kuadrat tersebut perlu dibandingkan dengan Chi Kuadrat tabel dengan dk dan taraf kesalahan tertentu. Dalam hal ini berlaku ketentuan bila Chi Kuadrat hitung lebih kecil dari tabel, maka Ho diterima, dan apabila lebih besar atau sama dengan (≥) harga tabel maka Ho ditolak.
Derajat kebebasan untuk Chi Kuadrat tidak tergantung pada jumlah individu dalam sampel. Derajat kebebasan akan tergantung pada kebebasan dalam mengisi kolom-kolom pada frekuensi yang yang diharapkan (fh) setelah disusun kedalam tabel berikut ini.
Kategori
I
|
A
|
M
|
II
|
B
|
N
|
(a + b)
|
(m + n)
|
Dalam hal ini frekuensi yang diobservasi (fo) harus sama dengan frekuensi yang diharapkan (fh). Jadi (a + b) = (m + n) dengan demikian kita mempunyai kebebasan untuk menetapkan frekuensi yang diharapkan (fh) = (m + n). Jadi kebebasan yang dimiliki tinggal satu yaitu kebebasan dalam menetapkan m atau n. Jadi untuk model ini derajat kebebasannya (dk) = 1.
Berdasarkan dk = 1 dan taraf kesalahan yang kita tetapkan 5% maka harga Chi Kuadrat tabel = 3,841. Ternyata harga Chi Kuadrat hitung lebih besar dari tabel (33,33 > 3,841). Sesuai ketentuan kalau harga Chi Kuadrat hitung lebih besar dari tabel, maka Ho ditolak dan Ha diterima. Jadi, kesimpulannya, hipotesis nol yang diajukan bahwa peluang pria dan wanita sama untuk dipilih menjadi kepala desa di kabupaten itu ditolak. Hasil penelitian menunjukkan bahwa masyarakat di kabupaten itu cenderung memilih pria menjadi Kepala Desa.
Komentar
Posting Komentar