Langsung ke konten utama

Teknik Pengambilan Sampel


Komentar

Postingan populer dari blog ini

Uji Anova(Uji F)

Anova adalah sebuah analisis statistik yang menguji perbedaan rerata antar grup. Grup disini bisa berarti kelompok atau jenis perlakuan. Anova ditemukan dan diperkenalkan oleh seorang ahli statistik bernama Ronald Fisher. Anova merupakan singkatan dari Analysis of variance. Merupakan prosedur uji statistik yang mirip dengan t test. Namun kelebihan dari Anova adalah dapat menguji perbedaan lebih dari dua kelompok. Berbeda dengan  independent sample t test  yang hanya bisa menguji perbedaan rerata dari dua kelompok saja. Dalam kesempatan bahasan kali ini, statistikian  akan menjelaskannya secara singkat namun dengan penuh harapan agar para pembaca mudah memahami dan mempraktekkannya dalam penelitian di lapangan nantinya. Kegunaan Anova Anova digunakan sebagai alat analisis untuk menguji hipotesis penelitian yang mana menilai adakah perbedaan rerata antara kelompok. Hasil akhir dari analisis ANOVA adalah nilai F test atau F hitung. Nilai F Hitung ini yang nantin...

Penyimpangan Data

PENGUKURAN PENYIMPANGAN DATA Pengukuran penyimpangan data adalah suatu ukuran yang menunjukkan tinggi  rendahnya perbedaan data yang diperoleh dari rata-ratanya. Ukuran penyimpangan digunakan untuk mengetahui luas penyimpangan data atau homogenitas data. Dua variabel data yang memiliki mean sama belum tentu memiliki kualitas yang sama, tergantung dari besar atau kecil ukuran penyebaran datanya. Ada bebarapa macam ukuran penyebaran data, namun yang umum digunakan adalah standar deviasi. Macam-macam ukuran penyimpangan data adalah : Jangkauan ( range ) Simpangan rata-rata ( mean deviation ) Simpangan baku ( standard deviation ) Varians ( variance ) Koefisien variasi ( Coefficient of variation ) 1. Jangkauan ( range ) Range adalah salah satu ukuran statistik yang menunjukan jarak penyebaran data antara nilai terendah (Xmin) dengan nilai tertinggi (Xmax). Ukuran ini sudah digunakan pada pembahasan daftar distribusi frek...

Besar Sampel dan Sumber Data

Dalam statistik inferensial, besar  sampel sangat menentukan representasi sampel yang diambil dalam menggambarkan  populasi penelitian. Oleh karena itu menjadi satu kebutuhan bagi setiap peneliti untuk memahami kaidah-kaidah yang benar dalam menentukan sampel minimal dalam sebuah penelitian. Cara menghitung besar sampel suatu penelitian sangat ditentukan oleh desain penelitian  yang digunakan dan data yang diambil. Jenis penelitian observasional dengan menggunakan disain cross-sectional akan berbeda dengan case-control study dan khohor, demikian pula jika data yang dikumpulkan adalah proporsi akan beda dengan jika data yang digunakan adalah data continue. Pada penelitian di bidang kesehatan masyarakat, kebanyakan menggunakan disain atau pendekatan  cross-sectional  atau belah lintang, meskipun ada beberapa yang menggunakan  case control ataupun khohor . Terdapat banyak rumus untuk menghitung besar sampel ...